Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-κB pathway

نویسندگان

  • Shahd Horie
  • Bilal Ansari
  • Claire Masterson
  • James Devaney
  • Michael Scully
  • Daniel O’Toole
  • John G. Laffey
چکیده

BACKGROUND Hypercapnia, with its associated acidosis (HCA), is a consequence of respiratory failure and is also seen in critically ill patients managed with conventional "protective" ventilation strategies. Nuclear factor kappa-B (NF-κB), a pivotal transcription factor, is activated in the setting of injury and repair and is central to innate immunity. We have previously established that HCA protects against ventilation-induced lung injury in vivo, potentially via a mechanism involving inhibition of NF-κB signaling. We wished to further elucidate the role and mechanism of HCA-mediated inhibition of the NF-κB pathway in attenuating stretch-induced injury in vitro. METHODS Initial experiments examined the effect of HCA on cyclic stretch-induced inflammation and injury in human bronchial and alveolar epithelial cells. Subsequent experiments examined the role of the canonical NF-κB pathway in mediating stretch-induced injury and the mechanism of action of HCA. The contribution of pH versus CO2 in mediating this effect of HCA was also examined. RESULTS Pulmonary epithelial high cyclic stretch (22 % equibiaxial strain) activated NF-κB, enhanced interleukin-8 (IL-8) production, caused cell injury, and reduced cell survival. In contrast, physiologic stretch (10 % strain) did not activate inflammation or cause cell injury. HCA reduced cyclic mechanical stretch-induced NF-κB activation, attenuated IL-8 production, reduced injury, and enhanced survival, in bronchial and alveolar epithelial cells, following shorter (24 h) and longer (120 h) cyclic mechanical stretch. Pre-conditioning with HCA was less effective than when HCA was applied after commencement of cell stretch. HCA prevented the stretch-induced breakdown of the NF-κB cytosolic inhibitor IκBα, while IκBα overexpression "occluded" the effect of HCA. These effects were mediated by a pH-dependent mechanism rather than via CO2 per se. CONCLUSIONS HCA attenuates adverse mechanical stretch-induced epithelial injury and death, via a pH-dependent mechanism that inhibits the canonical NF-κB activation by preventing IκBα breakdown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB /p38 pathway

Objective(s): Inflammation is involved in various forms of pulmonary arterial hypertension (PAH). Although the pathophysiology of PAH remains uncertain, NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) has been reportedto be associated with many inflammatory mediators of PAH. This study aimed to evaluate the effect of chronic intermittent hypobaric hypoxia (CIHH) on pulmonary inflammat...

متن کامل

Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-kappaB dependent mechanism.

BACKGROUND Hypercapnic acidosis exerts protective effects in acute lung injury but may also slow cellular repair. These effects may be mediated via inhibition of nuclear factor-kappaB (NF-kappaB), a pivotal transcriptional regulator in inflammation and repair. OBJECTIVES To determine the effects of hypercapnic acidosis in pulmonary epithelial wound repair, to elucidate the role of NF-kappaB a...

متن کامل

Comparison of the effects of moderate and severe hypercapnic acidosis on ventilation-induced lung injury

BACKGROUND We have proved that hypercapnic acidosis (a PaCO2 of 80-100 mmHg) protects against ventilator-induced lung injury in rats. However, there remains uncertainty regarding the appropriate target PaCO2 or if greater CO2 "doses" (PaCO2 > 100 mmHg) demonstrate this effect. We wished to determine whether severe acute hypercapnic acidosis can reduce stretch-induced injury, as well as the role...

متن کامل

Pediatric acute respiratory distress syndrome - current views

Acute respiratory distress syndrome (ARDS) mainly involves acute respiratory failure. In addition to this affected patients feel progressive arterial hypoxemia, dyspnea, and a marked increase in the work of breathing. The only clinical solution for the above pathological state is ventilation. Mechanical ventilation is necessary to support life in ARDs but it itself worsen lung injury and the te...

متن کامل

Hypercapnic acidosis attenuates endotoxin-induced acute lung injury.

Deliberate induction of prophylactic hypercapnic acidosis protects against lung injury after in vivo ischemia-reperfusion and ventilation-induced lung injury. However, the efficacy of hypercapnic acidosis in sepsis, the commonest cause of clinical acute respiratory distress syndrome, is not known. We investigated whether hypercapnic acidosis--induced by adding CO2 to inspired gas--would be prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016